外勤365在线登录-beat365官网下载-36500365体育在线投注

含圆周率的公式列表

含圆周率的公式列表

积分

编辑

sech

(

x

)

d

x

=

π

{\displaystyle \int \limits _{-\infty }^{\infty }{\text{sech}}(x)dx=\pi \!}

0

d

x

(

x

+

1

)

x

=

π

{\displaystyle \int _{0}^{\infty }{\frac {dx}{(x+1){\sqrt {x}}}}=\pi }

1

1

1

x

2

d

x

=

π

2

{\displaystyle \int \limits _{-1}^{1}{\sqrt {1-x^{2}}}\,dx={\frac {\pi }{2}}\!}

1

1

d

x

1

x

2

=

π

{\displaystyle \int \limits _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi \!}

d

x

1

+

x

2

=

π

{\displaystyle \int \limits _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi \!}

e

x

2

d

x

=

π

{\displaystyle \int \limits _{-\infty }^{\infty }e^{-x^{2}}\,dx={\sqrt {\pi }}\!}

(参见 正态分布)

d

z

z

=

2

π

i

{\displaystyle \oint {\frac {dz}{z}}=2\pi i\!}

(参见 柯西积分公式)

sin

(

x

)

x

d

x

=

π

{\displaystyle \int \limits _{-\infty }^{\infty }{\frac {\sin(x)}{x}}\,dx=\pi \!}

0

1

x

4

(

1

x

)

4

1

+

x

2

d

x

=

22

7

π

{\displaystyle \int \limits _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}}\,dx={22 \over 7}-\pi \!}

(参见 证明22/7大于π)

高效的无穷级数

编辑

参见:Category:圆周率算法

π

2

=

k

=

0

k

!

(

2

k

+

1

)

!

!

=

k

=

0

2

k

k

!

2

(

2

k

+

1

)

!

{\displaystyle {\frac {\pi }{2}}\!=\sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}}

(参见 双阶乘)

1

π

=

12

k

=

0

(

1

)

k

(

6

k

)

!

(

13591409

+

545140134

k

)

(

3

k

)

!

(

k

!

)

3

640320

3

k

+

3

2

{\displaystyle {\frac {1}{\pi }}\!=12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+{\frac {3}{2}}}}}}

(参见 楚德诺夫斯基算法)

1

π

=

2

2

9801

k

=

0

(

4

k

)

!

(

1103

+

26390

k

)

(

k

!

)

4

396

4

k

{\displaystyle {\frac {1}{\pi }}\!={\frac {2{\sqrt {2}}}{9801}}\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}}

(参见拉马努金)

π

=

3

6

5

k

=

0

[

(

4

k

)

!

]

2

(

6

k

)

!

9

k

+

1

(

12

k

)

!

(

2

k

)

!

(

127169

12

k

+

1

1070

12

k

+

5

131

12

k

+

7

+

2

12

k

+

11

)

{\displaystyle \pi \!={\frac {\sqrt {3}}{6^{5}}}\sum _{k=0}^{\infty }{\frac {[(4k)!]^{2}(6k)!}{9^{k+1}(12k)!(2k)!}}\left({\frac {127169}{12k+1}}-{\frac {1070}{12k+5}}-{\frac {131}{12k+7}}+{\frac {2}{12k+11}}\right)}

[1]

以下是任意位的二进制的π计算::

π

=

k

=

0

1

16

k

(

4

8

k

+

1

2

8

k

+

4

1

8

k

+

5

1

8

k

+

6

)

{\displaystyle \pi \!=\sum _{k=0}^{\infty }{\frac {1}{16^{k}}}\left({\frac {4}{8k+1}}-{\frac {2}{8k+4}}-{\frac {1}{8k+5}}-{\frac {1}{8k+6}}\right)}

(参见 贝利-波尔温-普劳夫公式)

π

=

1

2

6

n

=

0

(

1

)

n

2

10

n

(

2

5

4

n

+

1

1

4

n

+

3

+

2

8

10

n

+

1

2

6

10

n

+

3

2

2

10

n

+

5

2

2

10

n

+

7

+

1

10

n

+

9

)

{\displaystyle \pi ={\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {{(-1)}^{n}}{2^{10n}}}\left(-{\frac {2^{5}}{4n+1}}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)}

其他无穷级数

编辑

ζ

(

2

)

=

1

1

2

+

1

2

2

+

1

3

2

+

1

4

2

+

=

π

2

6

{\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}\!}

(参见巴塞尔问题和黎曼ζ函数)

ζ

(

4

)

=

1

1

4

+

1

2

4

+

1

3

4

+

1

4

4

+

=

π

4

90

{\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}\!}

ζ

(

2

n

)

=

1

1

2

n

+

1

2

2

n

+

1

3

2

n

+

1

4

2

n

+

=

(

1

)

n

+

1

B

2

n

(

2

π

)

2

n

2

(

2

n

)

!

{\displaystyle \zeta (2n)={\frac {1}{1^{2n}}}+{\frac {1}{2^{2n}}}+{\frac {1}{3^{2n}}}+{\frac {1}{4^{2n}}}+\cdots =(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}\!}

π

4

=

n

=

0

[

(

1

)

n

2

n

+

1

]

1

=

1

1

1

3

+

1

5

1

7

+

1

9

=

arctan

1

=

0

1

1

1

+

x

2

d

x

{\displaystyle {\frac {\pi }{4}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{1}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}=\int _{0}^{1}{\frac {1}{1+x^{2}}}dx}

(参见Π的莱布尼茨公式)

π

2

8

=

n

=

0

[

(

1

)

n

2

n

+

1

]

2

=

1

1

2

+

1

3

2

+

1

5

2

+

1

7

2

+

{\displaystyle {\frac {\pi ^{2}}{8}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots }

π

3

32

=

n

=

0

[

(

1

)

n

2

n

+

1

]

3

=

1

1

3

1

3

3

+

1

5

3

1

7

3

+

{\displaystyle {\frac {\pi ^{3}}{32}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots }

π

4

96

=

n

=

0

[

(

1

)

n

2

n

+

1

]

4

=

1

1

4

+

1

3

4

+

1

5

4

+

1

7

4

+

{\displaystyle {\frac {\pi ^{4}}{96}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots }

5

π

5

1536

=

n

=

0

[

(

1

)

n

2

n

+

1

]

5

=

1

1

5

1

3

5

+

1

5

5

1

7

5

+

{\displaystyle {\frac {5\pi ^{5}}{1536}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots }

π

6

960

=

n

=

0

[

(

1

)

n

2

n

+

1

]

6

=

1

1

6

+

1

3

6

+

1

5

6

+

1

7

6

+

{\displaystyle {\frac {\pi ^{6}}{960}}\!=\sum _{n=0}^{\infty }{\left[{\frac {(-1)^{n}}{2n+1}}\right]}^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots }

π

4

=

3

4

×

5

4

×

7

8

×

11

12

×

13

12

×

17

16

×

19

20

×

23

24

×

29

28

×

31

32

×

{\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}\times {\frac {5}{4}}\times {\frac {7}{8}}\times {\frac {11}{12}}\times {\frac {13}{12}}\times {\frac {17}{16}}\times {\frac {19}{20}}\times {\frac {23}{24}}\times {\frac {29}{28}}\times {\frac {31}{32}}\times \cdots \!}

(欧拉)

π

=

1

+

1

2

+

1

3

+

1

4

1

5

+

1

6

+

1

7

+

1

8

+

1

9

1

10

+

1

11

+

1

12

1

13

+

{\displaystyle \pi ={1}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots \!}

(欧拉, 1748)[2]

梅钦公式

编辑

参见梅钦公式.

π

4

=

4

arctan

1

5

arctan

1

239

{\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}\!}

(原始的梅钦公式.)

π

4

=

arctan

1

2

+

arctan

1

3

{\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}}\!}

π

4

=

2

arctan

1

2

arctan

1

7

{\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{2}}-\arctan {\frac {1}{7}}\!}

π

4

=

2

arctan

1

3

+

arctan

1

7

{\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}\!}

π

4

=

5

arctan

1

7

+

2

arctan

3

79

{\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}\!}

π

4

=

12

arctan

1

49

+

32

arctan

1

57

5

arctan

1

239

+

12

arctan

1

110443

{\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}\!}

π

4

=

44

arctan

1

57

+

7

arctan

1

239

12

arctan

1

682

+

24

arctan

1

12943

{\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}\!}

无穷级数

编辑

一些涉及圆周率的无穷级数:[3]

π

=

1

Z

{\displaystyle \pi ={\frac {1}{Z}}\!}

Z

=

n

=

0

[

(

2

n

)

!

]

3

(

42

n

+

5

)

(

n

!

)

6

16

3

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {[(2n)!]^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}\!}

π

=

4

Z

{\displaystyle \pi ={\frac {4}{Z}}\!}

Z

=

n

=

0

(

1

)

n

(

4

n

)

!

(

21460

n

+

1123

)

(

n

!

)

4

441

2

n

+

1

2

10

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}

π

=

4

Z

{\displaystyle \pi ={\frac {4}{Z}}\!}

Z

=

n

=

0

(

6

n

+

1

)

(

1

2

)

n

3

4

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}\!}

π

=

32

Z

{\displaystyle \pi ={\frac {32}{Z}}\!}

Z

=

n

=

0

(

5

1

2

)

8

n

(

42

n

5

+

30

n

+

5

5

1

)

(

1

2

)

n

3

64

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}\!}

π

=

27

4

Z

{\displaystyle \pi ={\frac {27}{4Z}}\!}

Z

=

n

=

0

(

2

27

)

n

(

15

n

+

2

)

(

1

2

)

n

(

1

3

)

n

(

2

3

)

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}

π

=

15

3

2

Z

{\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}\!}

Z

=

n

=

0

(

4

125

)

n

(

33

n

+

4

)

(

1

2

)

n

(

1

3

)

n

(

2

3

)

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}\!}

π

=

85

85

18

3

Z

{\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}\!}

Z

=

n

=

0

(

4

85

)

n

(

133

n

+

8

)

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}

π

=

5

5

2

3

Z

{\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}\!}

Z

=

n

=

0

(

4

125

)

n

(

11

n

+

1

)

(

1

2

)

n

(

1

6

)

n

(

5

6

)

n

(

n

!

)

3

{\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}\!}

π

=

2

3

Z

{\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}\!}

Z

=

n

=

0

(

8

n

+

1

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

9

n

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}\!}

π

=

3

9

Z

{\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}\!}

Z

=

n

=

0

(

40

n

+

3

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

49

2

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}\!}

π

=

2

11

11

Z

{\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}\!}

Z

=

n

=

0

(

280

n

+

19

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

99

2

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}\!}

π

=

2

4

Z

{\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}\!}

Z

=

n

=

0

(

10

n

+

1

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

9

2

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}\!}

π

=

4

5

5

Z

{\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}\!}

Z

=

n

=

0

(

644

n

+

41

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

5

n

72

2

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}\!}

π

=

4

3

3

Z

{\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}\!}

Z

=

n

=

0

(

1

)

n

(

28

n

+

3

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

3

n

4

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}\!}

π

=

4

Z

{\displaystyle \pi ={\frac {4}{Z}}\!}

Z

=

n

=

0

(

1

)

n

(

20

n

+

3

)

(

1

2

)

n

(

1

4

)

n

(

3

4

)

n

(

n

!

)

3

2

2

n

+

1

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}\!}

π

=

72

Z

{\displaystyle \pi ={\frac {72}{Z}}\!}

Z

=

n

=

0

(

1

)

n

(

4

n

)

!

(

260

n

+

23

)

(

n

!

)

4

4

4

n

18

2

n

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}\!}

π

=

3528

Z

{\displaystyle \pi ={\frac {3528}{Z}}\!}

Z

=

n

=

0

(

1

)

n

(

4

n

)

!

(

21460

n

+

1123

)

(

n

!

)

4

4

4

n

882

2

n

{\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}\!}

(

x

)

n

{\displaystyle (x)_{n}\!}

是阶乘幂中下降阶乘幂的符号。

n

=

1

4

n

2

4

n

2

1

=

2

1

2

3

4

3

4

5

6

5

6

7

8

7

8

9

=

4

3

16

15

36

35

64

63

=

π

2

{\displaystyle \prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdots ={\frac {\pi }{2}}\!}

(参见沃利斯乘积)

弗朗索瓦·韦达的公式:

2

2

2

+

2

2

2

+

2

+

2

2

=

2

π

{\displaystyle {\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot \cdots ={\frac {2}{\pi }}\!}

连分数

编辑

π

=

3

+

1

2

6

+

3

2

6

+

5

2

6

+

7

2

6

+

{\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots \,}}}}}}}}}}

π

=

4

1

+

1

2

3

+

2

2

5

+

3

2

7

+

4

2

9

+

{\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}

π

=

4

1

+

1

2

2

+

3

2

2

+

5

2

2

+

7

2

2

+

{\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}\,}

(参见连分数。)

杂项

编辑

n

!

2

π

n

(

n

e

)

n

{\displaystyle n!\approx {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\!}

(斯特灵公式)

e

i

π

+

1

=

0

{\displaystyle e^{i\pi }+1=0}

(欧拉恒等式)

k

=

1

n

φ

(

k

)

3

n

2

π

2

{\displaystyle \sum _{k=1}^{n}\varphi (k)\approx {\frac {3n^{2}}{\pi ^{2}}}\!}

k

=

1

n

φ

(

k

)

k

6

n

π

2

{\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}\approx {\frac {6n}{\pi ^{2}}}\!}

Γ

(

1

2

)

=

π

{\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}\!}

(伽玛函数)

π

=

Γ

(

1

4

)

4

3

a

g

m

(

1

,

2

)

2

3

2

{\displaystyle \pi ={\frac {\Gamma \left({\frac {1}{4}}\right)^{\frac {4}{3}}\mathrm {agm} (1,{\sqrt {2}})^{\frac {2}{3}}}{2}}\!}

lim

n

1

n

2

k

=

1

n

(

n

mod

k

)

=

1

π

2

12

{\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n^{2}}}\sum _{k=1}^{n}(n\;{\bmod {\;}}k)=1-{\frac {\pi ^{2}}{12}}\!}

lim

n

10

n

+

2

sin

(

1

55

55

n

d

i

g

i

t

s

)

=

π

{\displaystyle \lim _{n\rightarrow \infty }10^{n+2}\cdot \sin \left({\frac {1^{\circ }}{\underbrace {55\cdots 55^{\circ }} _{\mathrm {n\;digits} }}}\right)=\pi \!}

lim

n

n

sin

(

180

n

)

=

π

{\displaystyle \lim _{n\rightarrow \infty }n\cdot \sin \left({\frac {180^{\circ }}{n}}\right)=\pi }

lim

n

n

2

1

cos

(

360

n

)

=

π

{\displaystyle \lim _{n\rightarrow \infty }{\frac {n}{\sqrt {2}}}\cdot {\sqrt {1-\cos \left({\frac {360^{\circ }}{n}}\right)}}=\pi }

相关推荐

36500365体育在线投注 为什么发明了空调(空调的发展史
36500365体育在线投注 70寸电视标准尺寸(70英寸电视尺寸与长宽对照表)
36500365体育在线投注 手机怎么改视频格式